समबाहु त्रिभुज / Equilateral Triangle Equations Formulas Calculator - Perimeter



समबाहु त्रिभुज



Related image


समबाहु त्रिभुज की सभी भुजाएं समान होती हैं।
सभी अंतः कोण समान होते है।
किसी भी भुजा का लम्बार्द्धक सम्मुख कोण को समद्विभाजित करता है।
किसी भी शीर्ष से सम्मुख भुजा पर डाला गया लम्ब उस भुजा को समद्विभाजित करता है।
समबाहु त्रिभुज का केन्द्रक (सेन्ट्रॉड), अन्तःकेन्द्र incentre), परिकेन्द्र (circumcenter), लम्बकेन्द्र (orthocentre) सब एक ही बिन्दु पर होते हैं।
प्रमुख सूत्र



Image result for equilateral triangle formulas

वर्णन
त्रिभुज ABC जिसकी भुजाएं क्रमश a, b, c, हैं अर्द्धपरिमाप s है, क्षेत्रफल T, अंतर्वृत्त और परिवृत्त की त्रिज्याएँ क्रमशः ra, rb, rc (क्रमशः a, b, c के स्पर्शिय) हैं, तथा जहाँ R व r क्रमशः परिवृत्त और अंतर्वृत्त की त्रिज्याएँ हैं समबाहु होगा यदि और केवल यदि निम्न आठ कथनों में से कम से कम एक सत्य है। ये सभी समबाहु त्रिभुज के गुणधर्म भी हैं। 
भुजा


अर्द्धपरिमाप

कोण                             Image result for equilateral triangle formulas               


क्षेत्रफल



परिवृत्त, अंतर्वृत और परित्रिज्याएँ


समान प्रतिच्छेदी
त्रिभुज में तीन प्रकार की प्रतिच्छेदी रेखायें होती हैं जो समबाहु त्रिभुज में समान होती हैं।
तीनों ऊँचाइयाँ समान लम्बाई की है।
तीनों माध्यिकाओं की लम्बाई समान होती है।
तीनों कोण समद्विभाजकों की लम्बाई समान होती है।

अंतर्वृत्त त्रिभुज का केन्द्र

समबाहु त्रिभुज का प्रत्येक त्रिभुज केन्द्र इसके केन्द्रक के साथ सन्निपतित होता हैं और कुछ त्रिभुज केन्द्रों के सन्निपतित होना इसकी उपपत्ति के लिए पर्याप्त है कि त्रिभुज समबाहु है। विशेष रूप से यदि परिवृत्त केन्द्र, अंतर्वृत्त केन्द्र, केन्द्रक, लम्ब केन्द्र आदि में से कोई दो सन्निपतित होते हैं तो वह त्रिभुज समबाहु त्रिभुज है। 
माध्यिकाओं के विभाजन से निर्मित त्रिभुज
किसी भी त्रिभुज के लिए, तीनों माध्यिकाओं के विभाजन से छः छोटे त्रिभुज बनते हैं।
एक त्रिभुज समबाहु है यदि और केवल यदि तीन छोटे त्रिभुज या तो समान परिमाप रखते हैं अथवा समान अंतर्वृत्त त्रिज्या।
एक त्रिभुज समबाहु है यदि और केवल यदि किन्हीं तीन छोटे वृत्तों के परिवृत्तों के केन्द्र केन्द्रक से समान दूरी पर हों।
ज्यामितिय रचना
एक समबाहु त्रिभुज की रचना निर्मेय के साथ आसानी से की जा सकती है। इसके लिए एक सीधी रखा खींचो और परकार का एक छोर रेखा के अन्त में रखो, अब प्रकार के दूसरे छोर को रेखा के दूसरे बिन्दु अन्त तक बढ़ाओ और एक चाप के रूप में परकार को घुमाओ। समान प्रक्रिया दूसरे बिन्दु पर भी दोहराओ। अन्ततः इस रेखा के दोनों अन्त बिन्दुओं को चापों के काट बिन्दु से सीधे जोडो।
वैकल्पिक विधि:
एक वृत्त का निर्माण करो जिसकी त्रिज्या r है, इस वृत्त के किसी भी बिन्दु पर परकार की सुई रखो और समान त्रिज्या का दूसरा वृत्त बनाओ। दोनो वृत्त दो बिन्दुओं पर एक दूसरे को काटते हैं। इन दोनों बिन्दुओं में से किसी एक को दोनो वृत्तों के केन्द्रों से मिलाने तथा दोनों वृत्तों के केन्द्रों को आपस में मिलाने पर समबाहु त्रिभुज प्राप्त होता है।
इसकी उपपत्ति की यह त्रिभुज समबाहु होगा यूक्लिडिय अवयव की पुस्तक के प्रथम भाग में मिल सकता है।

परकार और पटरी की सहयता से समबाहु त्रिभुज का निर्माण
समाज और संस्कृति में
मानव निर्मित कार्यों में कई स्थानों पर समबाहु त्रिभुज के समान रचना की जाती है:
कुछ पुरातत्व स्थल समबाहु त्रिभुज के समरूप है 
जैसे सर्बिया के लेपेंस्की विर।

Post a Comment

0 Comments